High-threshold K+ current increases gain by offsetting a frequency-dependent increase in low-threshold K+ current.

نویسندگان

  • Fernando R Fernandez
  • W Hamish Mehaffey
  • Michael L Molineux
  • Ray W Turner
چکیده

High-frequency firing neurons are found in numerous central systems, including the auditory brainstem, thalamus, hippocampus, and neocortex. The kinetics of high-threshold K+ currents (IK(HT)) from the Kv3 subfamily has led to the proposal that these channels offset cumulative Na+ current inactivation and stabilize tonic high-frequency firing. However, all high-frequency firing neurons, examined to date, also express low-threshold K+ currents (IK(LT)) that have slower kinetics and play an important role in setting the subthreshold and filtering properties of the neuron. IK(LT) has also been shown to dampen excitability and is therefore likely to oppose high-frequency firing. In this study, we examined the role of IK(HT) in pyramidal cells of the electrosensory lobe of weakly electric fish, which are characterized by high-frequency firing, a very wide frequency range, and high levels of IK(HT). In particular, we examined the mechanisms that allow IK(HT) to set the gain of the F-I relationship by interacting with another low-threshold K+ current. We found that IK(HT) increases the gain of the F-I relationship and influences spike waveform almost exclusively in the high-frequency firing range. The frequency dependence arises from IK(HT) influencing both the IK(LT) and Na+ currents. IK(HT) thus plays a significant role in stabilizing high-frequency firing by preventing a steady-state accumulation of IK(LT) that is as important as preventing Na+ current inactivation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Speed Full Swing Current Mode BiCMOS Logical Operators

In this paper the design of a new high-speed current mode BiCMOS logic circuits isproposed. By altering the threshold detector circuit of the conventional current mode logic circuitsand applying the multiple value logic (MVL) approach the number of transistors in basic logicoperators are significantly reduced and hence a reduction of chip area and power dissipation as wellas an increase in spee...

متن کامل

Modification of Nifedipine Inhibitory Effect on Calcium Spike and L-Type Calcium Current by Ethanol in F1 Neuron of Helix aspersa

There is strong evidence demonstrating that nifedipine dissolved in ethanol selectively inhibits only L-type Ca2+ current. In addition, acute ethanol exposure reduces voltage-dependent calcium currents. In the present study, we investigated the antagonistic effect of fixed concentration of nifedipine dissolved in different concentration of ethanol on L-type Ca2+ current. In a Na+-K+ free soluti...

متن کامل

How adaptation currents change threshold, gain, and variability of neuronal spiking.

Many types of neurons exhibit spike rate adaptation, mediated by intrinsic slow K(+) currents, which effectively inhibit neuronal responses. How these adaptation currents change the relationship between in vivo like fluctuating synaptic input, spike rate output, and the spike train statistics, however, is not well understood. In this computational study we show that an adaptation current that p...

متن کامل

Comparison of the effect of quasitrapezoidal and rectangular pulses on bio- electrical activity, calcium spike properties and afterhyperpolarization potentials of Fl cells of Helix aspersa using intracellular recording

  While the effect of changes of stimulus waveform (quasitrapezoidal and rectangular current pulses) on nerve activation is clear, but there is no evidence on the effect of quasitrapezoidal pulses on ionic currents of cellular membrane. In the present study, the effect of depolarizing quasi-trapezoidal current pulses, in comparison with that of depolarizing rectangular current pulses, on firing...

متن کامل

Asymmetric Rectangular Waveform in Stimulation with High Frequency Alternating Current Reduces the Threshold for Neural Conduction Block

Introduction Abnormal neural impulses in the nervous system may lead to various diseases and disabilities. High frequency alternating currents (HFAC) has been used to block the propagation of such impulses and improve the symptoms or disabilities. The technique is safe, reversible, and relatively selective, and its reliability, the optimum stimulation parameters, and elimination of the onset re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 25 2  شماره 

صفحات  -

تاریخ انتشار 2005